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both methods simultaneously whenever there is any 
doubt in practice. 
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Abstract 

This paper is the first of a series of three devoted to 
crystallography in the five-dimensional space E 5. The 
38 types of point symmetry operations (PSO for short) 
are described i.e. 19 types of PSO+s or rotations and 
19 types of PSO-s or improper rotations; each of 
them generates a cyclic point group. A WPV (Weigel, 
Phan, Veysseyre) symbol is given both to the PSOs 
and to the cyclic groups. There is a generalization of 
the well known symbols of E 3. For instance, 6 is the 
symbol of a point group of ~3 (and E4), and 6 has 
app_lication in ~:5 (and E6); but new symbols such 
as 6, 66 are also required. 

Introduction 

Before giving the geometrical name of the 23 crystal 
families of the space E 5 and the WPV symbol* of their 
holohedries, i.e. the crystallographic point group of 
their empty lattice, we must list all the types of crys- 
tallographic point symmetry operations (cr PSOs for 
short). Indeed these cr PSOs generate the cr point 
groups and determine their WPV symbols. 

To start we recall the number of types of cr PSOs 
and their WPV symbols in spaces of dimension less 
than five (Veysseyre & Weigel, 1989) 

2 cr PSOs in El: 1 and m; 
6 cr PSOs in ~:2: 1, 2, 3, 4, 6 and m; 

* WPV: Weigel, Phan & Veysseyre (1987) generalized Hermann- 
Mauguin symbols. 
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10 cr PSOs in E 3 -" 1, 2, 3, 4, 6 and m, 1, 3, 4, 6; 
24 cr PSOs in E4:1, 2, 3, 4, 6, 14, 24, 26, 32, 33, 43, 

44, 46, 63, 66, 55, 1010, 88, 1212 and m, 1, 3, 4, 6. 
Let us remember that 3 ~y, 3 for short, is the elemen- 

tary rotation through the angle 27r/3 in the plane xy 
about a point in E 2, about the z axis in E 3 and about 
the 3-dimensional space ztu in E 5. 

On the other hand, the double rotation 1 3 8xy8zt, 88 
for short, about a point in E 4 (and about the axis u 
in ~:5) is the commutative product of two rotations 
through the angle 27r/8 in the plane xy about the 
plane zt, and through the angle 67r/8 in the plane zt 
about the plane xy. Let us recall that the two planes 
xy and zt are orthogonal and that they intersect at 
only one point. 

I. Crystallographic point symmetry operations of E s 

The number of types of cr PSOs is well known in E 5 
(Hermann, 1949; Weigel, Veysseyre, Phan, Effantin 
& Billiet, 1984). Indeed there are 19 types ofcr  PSO+s 
and 19 types of crPSO-s as in a space of odd 
dimension the number of cr PSO*s and of cr PSO-s 
are equal. The PSO*s are the proper rotations, and 
the PSO-s are the improper rotations. For example 
3 is the threefold rotation and hence it is a PSO*; 
is the threefold rotation-inversion or a rotation-reflec- 
tion through the angle - 2 ~ / 6 ,  it is a PSO-. A 
homothetie of ratio ( -1)  can be a PSO* if its 
dimension is an even number, such as 14 for instance, 
or a PSO- if its dimension is an odd number, e.g. 
13, 15 . . . .  
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If  we return to the space II :4 , we know that there 
are 19 types of PSO+s and 5 types of PSO-s. 

Our purpose is to assign a WPV symbol to the new 
types of PSOs of ~:5. As a matter of fact, we represent 
the space E 5 as a direct sum of two orthogonal sub- 
spaces: 

Then the matrix of a PSO is matrix 1 with respect to 
a correct basis, where A is the matrix associated with 
a PSO + of the subspace H :4 and e equals either 1 for 
a PSO ÷ of ~:5 or - 1  for a PSO- of E 5. 

/ °) A 0 

0 

0 

0 0 0 0 e 

Matrix number 1. General PSO of E 5. 

(1) The 19 types of PSO+ s of IF. 5 

As they correspond to e equal to 1 in the previous 
decomposition, they are all the PSO+s of []=4 and 
consequently they have the same WPV symbols. We 
can illustrate this with the example of the double 

1 1 rotation denoted 4xy4z, and described by matrix 2. 
Of course, all these 19 PSO+s are polar PSO+s of ~:5 
(Veysseyre & Weigel, 1989). 

t o i 0 0 0 t 1 0 0 0 0 

o 0 o i o 
0 0 1 0 0 

0 0 0 0 1 

Matrix number 2. Double rotation 4,,y4zt.t 1 

(2) The 19 types of PSO-s of IF. 5 

These correspond to e equal to -1  in the previous 
decomposition. We can classify these PSO-s in the 
following way: 

(a) A is the unit matrix of E 4. The corresponding 
matrix in ~:5 is the diagonal matrix 3 where the unwrit- 
ten terms are zeros. This PSO has the symbol m, and 
it is a reflection through the mirror-hyperplane (xyzt). 
It is the first type of PSO- of E 5. 

t l 1 1 
1 

0 0 0 0 

(b) A is the matrix associated with the PSO 14. 
Obviously the corresponding matrix of n :5 is the 
reverse of the matrix identity and this PSO- has the 
symbol 15. In the space [F 3 w e  denoted the PSO- 13, 
or T for short; in the same way the PSO- 15 of ~:5 will 
be denoted 1 (matrix 4). 

t i i i i 

0 0 0 0 

Matrix number 4. Total homothetie 1. 

(c) A is the matrix of an elementary rotation 4 ~  
for instance (matrix 5). It is also the same type of 
PSO- of n :4 as the previous one and its WPV symbol 

1 is 4xym,,. In this way we find four types of PSO- of 
n :5 which have the following symbols: 

2xym. = 1,,y. 

3 ~ m .  = 6 ~  
±1  ~ 1  

4 xy m u  --'-- 4xy 

6 ~  m,, = 3xy. 

The first one is denoted T~,y. because it is a partial 
homothetie of ratio ( -1 )  and of dimension 3; it is 
also an inversion through the plane zt. 

t 
0 i 0 o  
1 0 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

I Matrix number 5. Rotation-reflection 4xym.. 

(d) A is the matrix associated with a double rota- 
tion either through the same angle (matrix 6) or 
through two different angles (matrix 7). For these 
PSO-s several notations are possible and correct. 

Matrix number 6. 

° i ° ° °  t 
1 0 0 0 0 

0 0 o i o  
0 0 1 0 0  
0 0 0 0 i  

DouBle rotation-reflection 4xy4z,-1 -~. 

1 0 0 0 t 0 i o o 
0 o o i 
0 0 1 0 

0 0 0 0 

Matrix number 3. Reflection m.. Matrix number 7. Rotation-reflection 4~-t 1. 



D. WEIGEL, R. VEYSSEYRE AND T. PHAN 465 

Table 1. The 19 types of PSO-s of  E 5 

This table lists all the PSO-s of  the five-dimensional space with 
their WPV symbols either with the reflection m or with the 
homothetie T or Y if possible. 

mu 

L i 
2xymu Ixyu 
3~ymu 6 ~  
41xym. 4,:~ 
61xym~ 3x--y t 
2xy4tzz mu 4zz l 

1 2xy6~,mw 3 ~-tl ~ 
31xy2~tm~ 6~yt~ 

1 i --1 --I = 3xy3ztmu 6xy6zt 1 
1 1 --1 --I m 

4xy3ztm. 4xy6zt 1 
s t  4~yt4ztl i 4xy4zzmu 
1 1 --1 --1 = 4xy6ztmu 4xy3zt 1 
1 ! --1 - - I  = 6xy3~zmu 3xy6zz 1 
1 I --1 - - I  = 6xy6ztmu 3xy3zt 1 
, -2 10~310~oi  5 AB5 CO m .  
1 3 --3 --1 = 

8 AB8 c o m u  8AB8 CO1 
3 --1 - I  2 = 

I O A B I O c D m u  5AB5CD1 

, 5 12A512cbi 12 Aa12cDmu 

For instance the PSO- given by matrix 6 can be 
written 

or again 

1 1 -- --1 --1 = --1 --1 4xy4ztmu or 154xy4zt = 14xy4zt 

- - 1  - 1  
4 x y 4 z t  • 

In the same way, the PSO- given by matrix 7 can be 
written 

1 -- 1 2xy4z, m,, = lxyu4z, = ~4~-t 1= 4~ 1. 

As there exist 13 types of double rotations in ~:4 which 
are 23; 24; 26; 33; 34; 36; 44; 46; 66; 55; 88; 1010; 
1212, we find 13 types of double rotation-inversions in 
~:5 (and in ~:6). 

The 19 types of PSO-s of II :5 are listed in Table 1. 

(3) Remarks 

(a) The total homothetie of ratio ( -  1 ) of dimension 
4 is perfectly defined in the space ~:4 by the symbol 
14 but in the space IF 5 we cannot write 14 or 1 without 
specifying the supports of these PSOs. We must write 
lxytu for instance; then there is no ambiguity about 
the PSO. 

More generally when we describe the total 
homothetie of ratio ( - 1 )  in the space E" it is without 
interest to specify the support of this PSO and the 
symbol T, is correct, but the support becomes 
necessary for a partial homothetie of dimension p in 
a space of dimension n when p is strictly smaller than 
n. 

(b) For all the double rotation-reflections, two or 
three symbols are equally good as these PSO-s are 

also double rotation-inversions: 
1 1 = --1 -1  -1  --1 6xy4ztm,, = 13xy4~t = 3xy4zt • 

We remark that the notation with a double line above 
the symbol of the PSO can be used for a reflection- 
rotation. Indeed, 

3 lxy2z, m, i - -1~ -1 = 3 xyl zzu -" 6xy = 6xy. 

As long as we consider the PSOs, the complete 
1 1 notation such as 6xy4z, m,, is the best one because it 

quickly gives all the supports of the elementary PSOs. 
But if we consider the cyclic group generated by these 
PSOs the reduced notation is best, as we shall explain 
in the next section. 

II. Notation of the crystallographic cyclic point 
symmetry groups in E s 

It is easy to prove that each type of cr PSOs of the 
space H:" generates a cyclic cr PSG of order p, p being 
the order of the considerated PSO; i.e. we can state 
the following general result: 

In the n-dimensional space E" the number of  cyclic 
crystallographic point groups is the same as the number 
of types of crystallographic point symmetry operations. 

In this way there are: 
2 cyclic cr PSGs in El; 
6 cyclic cr PSGs in E 2 among the 10 cr PSGs; 
10 cyclic cr PSGs in ~:3 among the 32 cr PSGs; 
24 cyclic cr PSGs in E 4 among the 227 cr PSGs; 
38 cyclic cr PSGs in H :5 among the unknown num- 

ber of cr PSGs. 
We give an example to explain the construction of 

such a group. Let us consider the PSO denoted 
1 1 4xy4zzm,,; it generates the cyclic group with elements 

1 1 4xy4zzmu i x y z t  , --1 --1 ; " 4xy4,t m, ;  1. 

It is of order 4 as the generator element. 
Obviously, if we select another orientation of this 

space, the PSO will be denoted -1 1 4xy 4ztm, for instance 
and the elements of the cyclic group will be 

-1 1 4xy4z, m, ixyz,, 1 -l  ; • 4~y4zt m,,; 1. 

These two cyclic_groups are isomorphic, and have 
the WPV symbol 44. We have already explained the 

1 1 reduced notation of the PSO 4xy4ztm,. 
Among the 38 PSOs of II :5, 24 are PSOs of ~74 and 

constitute the polar cr PSOs of H :5 (Veysseyre & 
Weigel, 1989). They generate 24 cyclic polar PSGs of 
E 5, and have symbols previously defined (Weigel, 
Phan & Veysseyre, 1987). They are listed in the first 
part of Table 2. 

The other 14 types of PSOs of i :5 are double rota- 
tion-reflections or double rotation-inversions. They 
generate 14 cyclic nonpolar  cr PSGs of H :5. For these 
groups we propose a general symbol: the symbol of  
the generator with a double line above. 



466 CRYSTALLOGRAPHY, GEOMETRY AND PHYSICS IN HIGHER DIMENSIONS.  VIII 

Table 2. WPV symbols of  the 38 crystallographic cyclic 
PSGs of  F. 5 

The first column indicates one possible generator and the second 
one the WPV symbol of the generated cyclic group. 

WPV symbol of the 
PSO generated PSG 

1 1 
2xy 2 
3 1 y  3 

4~y 4 
61xy 6 

ix~z, i ,  
2xy41zt 24 
2~,y61-, 26 
3 lxy2zt 3.1. 2 

1 1 3xy3v~ 33* 
1 1 4xy3zt 4.1_3 
1 1 4xy6z, 46 
l t 44, 4 x y 4  v8 
I 1 6xy3zt 63 
1 1 

6xy6- /8  66* 
1 --2 5A~5C0 55 

10~,~10bb lO10 
1 3 8 AB8 CO 88 

12~a125D 1212 
m u m 

i~yz i 
3x-~ 
4xy  4. 

6:,-'-~ 

L i 
3',,T ] 

1 = 4,rl 
6'zri g 

1 1 = 3~,y3zfl 33 
1 1 = 4xy4ztl 44 
1 1 = 4xy3ztl 43 
1 1 = 6xy3~tl 63 
1 1 ffi 

6 x y 4 z t l  64  
1 1 = 6xz6~,l 66 
I 2 = 5 An5 CO 1 55 

lOAglO~Di 1010 
12~t~12cbi 1212 

These PSGs are listed in the second part of 
Table 2. 

To clarify these notions, we write the elements of 
three groups: 

( a )  The cr PSO 8183 (88 for short) generates the 
cyclic cr PSG denoted 88 which has the elements* 

8183; 414-1; 8381; L(~zt); 858-1; 4-141; 8-18-3; 1. 

* Instead of 8t83 we can write 8t85; these two elements generate 
two isomorphic cyclic groups. But if we consider the hypercube 
of the space D :4 these two PSOs generate two different subgroups 
of its PSG; they belong to two classes of conjugate elements of 
the rotation group and to only one for the PSG (Veysseyre, Weigel, 
Phan & Effantin, 1984). 

Obviously we suppose that an orientation of the space 
has been defined. 

(b) The cr PSO 8183 (i.e. 818ai5 = 818a~) generates 
the cyclic cr PSG denoted 88 which has for elements 

8183; 414-1; 8381; i4(xyzt); 8--38--1; 4-141; 8-18-3; 1. 

(c) Lastly the PSO ~1 generates the cyclic cr PSG 
of order 4 which has the elements 

~1; 2; 4-1; 1. 

Now, we compare the PSG 88 of order 8 and the 
PSG 88±m of order 16; the elements of this last one 
are the eight elements of the PSG 88 and the following 
ones: 

8183mu 

=8-38-1; 4-141; 8-18-3; 15; 8183; 414-1; 8381; m,. 

We remark that the cyclic PSG 88 is a subgroup of 
index 2 of the (non-cyclic) PSG 88_1_m, as 88 is a 
subgroup of index 2 of the PSG 88_1_m. The PSG 
88±m is a hemihedry of the crystal family denoted 
as right hyperprism based on "di-isosquares monoclinic" 
(Weigel et al., 1987). 

In the same way in the space ~:3, the two PSGs 6 
and 6 are two subgroups of index 2 of the PSG 6/m;  
besides it is possible to write 6_1_ m for the PSG 6/m, 
it__Ls 12 elements being 61, 31, 2, 32, 65, 1, 31, 61, 1, 65, 
3 -2 , m. Moreover, 6 /m is a hemihedry of the 
hexagonal family which has the PSG 6/mmm or 6/m 
2/m 2/m of order 24 as holohedry. 

IlL Concluding remarks 

Though the number of cr point groups of ~:5 is 
unknown, we describe in this paper all those PSGs 
which are cyclic; there are 38 of them. We know the 
polar PSGs of II :5 too: there are 227 polar PSGs in F 5. 
Their WPV symbols have already been given (Weigel 
et al., 1987) for they are identical to the 227 PSGs of 
~:n, Among these, 24 are cyclic (and polar). 

In a subsequent paper, we shall give the WPV 
symbols of the 23 holohedries of the 32 crystal 
families of ~:5 as well as the subgroups of these holo- 
hedries in order to enumerate all the cr PSGs of E 5. 
A physical application of these results is the study of 
the di-incommensurate phases of the physical space. 
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